If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-32x+12=0
a = 4; b = -32; c = +12;
Δ = b2-4ac
Δ = -322-4·4·12
Δ = 832
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{832}=\sqrt{64*13}=\sqrt{64}*\sqrt{13}=8\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-32)-8\sqrt{13}}{2*4}=\frac{32-8\sqrt{13}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-32)+8\sqrt{13}}{2*4}=\frac{32+8\sqrt{13}}{8} $
| 3x+7=2(3x-15) | | 5.31=p9.2 | | 124=15.5x-8 | | 200x=40,000 | | 2.5(z-5)=5 | | Y=162-8x^2 | | 4x+6+3x=8+2x+3 | | 4(2x-3)+2x=10-12 | | 5x-7x+12x=-45 | | 3p+1.8=19,8 | | 24/x=-8/3 | | –4+3z=–2+5z | | 10x=5(2x+3) | | 3(3w-5=12 | | 2x+x-3+x-2=29 | | 4x-6=+56 | | –(f+14)=–6 | | 6450x=6400 | | 6400x=6450 | | 7x-23=3x+47 | | 10(5x•30)=20 | | (D^4+3D^3-6D^2-28D-24)*y=0 | | (x+3)=8—2x | | 2x-26=62-4x | | 50x(30)=20 | | 12+0.5x=30 | | 2a+a=108° | | 3.2*x=5 | | x+4=9+x | | 10(5x•3)=20 | | 12=6t+9 | | x=28±40 |